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Abstract
The distribution of the characteristic polynomialZ(U, θ) ofN×N matricesU
in the circular unitary ensemble is studied by the method of second quantization
for one-dimensional fermions. For infinite N the Gaussian distribution of
Z(U, θ) is established straightforwardly by bosonization. A general expression
for the n-point correlation function of the characteristic polynomial at different
points is given by this method. The case of finite N is discussed.

PACS numbers: 0210N, 0530C, 0210L, 0210S

The statistical properties of the Riemann zeta function [1] have been extensively studied
analytically [2, 3] and numerically [4] and their analogy with the corresponding properties
of ensembles of random matrices was investigated within the framework of the random matrix
theory [5]. Recently, the distribution of values taken by the characteristic polynomials

Z(U, θ) = det
(
I − Ueiθ

) =
N∏
j=1

(
1 − ei(θ−θj )) (1)

of N ×N unitary random matrices U with eigenvalues e−iθj belonging to the circular unitary
ensemble (CUE) was investigated in [6,7]. In particular, it was shown by explicit calculations
that in the limitN → ∞ the distribution of the real and imaginary parts of logZ(U, θ) divided
by a factor of

√
(1/2) logN is a standard normal distribution in two dimensions. This was

conjectured to mimic the similar behaviour of the Riemann zeta function high up the critical
line. The convergence of the corresponding cumulants to the Gaussian limit as N → ∞ was
also explicitly calculated and they were conjectured to describe the corresponding properties
of the Riemann zeta function.

In this paper I use the equivalence between the CUE and a theory of fermions in one
dimension to calculate the statistical properties of logZ(U, θ) using the method of second
quantization. One of the most prominent features of this approach is that the case N = ∞
can be studied from the very beginning, thus avoiding the tedious finite-N calculations and the
asymptotic expansion. For infinite N the calculations simplify a great deal, since in this case
the fermionic theory is equivalent to a theory of free bosons, the fact known under the name
of bosonization [8]. In what follows I calculate the distribution functional of the characteristic
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polynomial (1) for infiniteN using this equivalence. In mathematical literature bosonization is
known under the name of the Frobenius formula for irreducible characters of the permutation
group [9] or the Szegö asymptotic formula for Toeplitz determinants.

Let me briefly describe the relation between the CUE and the fermions in one dimension. In
random matrix theory one is interested mainly in calculating statistical averages of functions,
which depend only on the eigenvalues e−iθj of U . Consider some symmetric function of
eigenvalues f (θ) ≡ f (θ1, . . . , θN), and its average, defined as

〈f 〉 ≡ 1

(2π)NN !

∫
dNθ

∣∣D(eiθ
)∣∣2f (θ) (2)

where the (Haar) measure of integration is defined with the help of the Vandermonde
determinant [5, 9]:

D(z) ≡ D(z1, . . . , zN) = det
[
zN−k
j

]
j,k=1,2,...,N =

∏
j<k

(zj − zk). (3)

Consider a quantum particle on a ring 0 < θ < 2π , described by the wavefunction of the nth
orbital:

ψn(θ) = 1√
2π

einθ . (4)

The Vandermonde determinant D
(
eiθ
)

is therefore proportional to the Slater determinant

�(θ) ≡ �0(θ1, . . . , θN) = 1√
(2π)NN !

det
(
ei(N−k)θj ) (5)

composed of particles (fermions) occupying the orbitals n = N − k = 0, . . . , N − 1. The
proportionality factor coincides exactly with the square root of the normalization factor in front
of the integral in (2) and this average can be rewritten as a quantum mechanical expectation
value

〈f 〉 = 〈�0|f |�0〉 =
∫

dNθ �∗
0 (θ) f (θ)�0(θ) (6)

of the operator f defined as f (θ) in the coordinate representation. This correspondence of
the RMT and one-dimensional fermions will be used extensively throughout this paper and in
particular the statistical average 〈· · ·〉 and the quantum expectation value 〈�0| · · · |�0〉 will be
interchanged in the course of the paper by the virtue of (6). Some application of the fermionic
picture will be presented in what follows.

The central object of my discussion is the logarithm of the characteristic polynomial (1):

L(θ) = logZ(U, θ) =
N∑
j=1

log
(
1 − ei(θ−θj )). (7)

Expanding the logarithm, equation (7) can be rewritten as

L(θ) = −
∞∑
k=1

eikθ

k

N∑
j=1

e−ikθj = −
∞∑
k=1

eikθρk

k
(8)

where we have used the Fourier transform of the density operator:

ρk = tr
(
Uk
) =

N∑
j=1

e−ikθj =
∫ 2π

0
dθ e−ikθρ(θ)

ρ(θ) =
N∑
j=1

δ(θ − θj ) = 1

2π

+∞∑
k=−∞

eikθρk.

(9)
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In order to calculate the statistical properties of L(θ) using the correspondence (6) between
statistical average and quantum expectation value it is convenient to employ the method of
second quantization. We introduce creation and annihilation operators c†

n and cn for a fermion
on the nth orbital with usual anti-commutation relations:

{cn, c†
m} ≡ cnc

†
m + c†

mcn = δn,m {cn, cm} = {c†
n, c

†
m} = 0. (10)

The quantum state |�0〉 is then defined by the action of the creation operators on the vacuum:

|�0〉 =
N−1∏
n=0

c†
n|Vac〉. (11)

The second-quantized form of the density operator ρk is given by the standard rules [10]:

ρk = ρ
†
−k =

+∞∑
n=−∞

c
†
n−kcn (12)

for k �= 0, while for k = 0 the definition (9) gives ρ0 = N—the total number of particles.
When acting on the state |�0〉 the density operator ρk creates a linear combination of states in
which one particle on the nth orbital is moved k orbitals down, provided the orbital n − k is
empty. This simple observation yields the important result (for k �= 0)

〈ρkρ†
p〉 = δk,pC2(k) = δk,p〈�0|ρkρ†

k |�0〉 = δk,p ×
{

|k| |k| � N

N |k| > N
(13)

otherwise obtained by using the Wick theorem. The correlation function C2(k) = 〈ρkρ†
k 〉 with

C2(0) = N2, is nothing but a Fourier transform of the DOS–DOS correlation function [5] of
CUE:

C2(θ;N) = 〈ρ(θ)ρ†(0)〉 = 1

2π

+∞∑
k=−∞

eikθC2(k;N) = N

2π
δ(θ) +

(
N

2π

)2

−
(

sin Nθ
2

2π sin θ
2

)2

.

(14)

The symmetry of the correlation function C2(k;N) with respect to k → −k follows from the
fact that for finite N the density operators ρk and ρ†

k commute. For infinite N , as we shall see,
this is not true.

I now proceed to calculate the correlation functions of the logarithm of the characteristic
polynomial. In the work [6] the correlation functions ofL(θ)were calculated at the same point.
Here I generalize this result to the case of the two-point correlation function, and calculate

K2(θ1 − θ2;N) = 〈L(θ1)L
†(θ2)〉 (15)

P2(θ1 − θ2;N) = 〈L(θ1)L(θ2)〉 (16)

where in the coordinate representation L†(θ) = L∗(θ).
Due to the translational symmetry all the correlation functions depend on the difference

θ = θ1 − θ2 only. From (15) and (16) the correlation functions of the real and imaginary parts
of L(θ) can be easily obtained. I notice that P2(θ) vanishes due to the fact that the Kronecker
delta in (13) is never satisfied. Moreover, it follows that

Q2(θ1 − θ2;N) ≡ 〈ReL(θ1)ReL(θ2)〉 = ReK2(θ1 − θ2;N)
2

R2(θ1 − θ2;N) ≡ 〈ImL(θ1) ImL(θ2)〉 = ReK2(θ1 − θ2;N)
2

(17)
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and in addition there exists a cross-function given by

X2(θ1 − θ2;N) ≡ 〈ImL(θ1)ReL(θ2)〉 = −〈ReL(θ1) ImL(θ2)〉 = ImK2(θ1 − θ2;N)
2

.

(18)

It can be checked that 〈L(θ)〉 = 〈L†(θ)〉 = 0 so there is no difference between connected and
disconnected correlation functions.

The calculation of K2(θ;N) using the definition (8) is straightforward:

K2(θ1 − θ2;N) =
∞∑

k,p=1

eikθ

kp
〈ρkρ†

p〉 =
∞∑
k=1

eikθ

k2
C2(k;N) =

N∑
k=1

eikθ

k
+N

∞∑
k=N+1

eikθ

k2
. (19)

For correlations at the same point, θ = 0, the result is real and its half coincides precisely with
the expression (43) in [6]:

K2(0;N)
2

= Q2(0;N) = R2(0;N) = 1

2

N∑
k=1

1

k
+
N

2

∞∑
k=N+1

1

k2
(20)

which behaves as (1/2) logN for large N . It is worth noticing that for θ �= 0 the function
K2(θ) is complex, therefore there exists a correlation between the real and imaginary parts of
L(θ) at different points, a fact which is missed when the correlation function is calculated at
the same point.

Now the calculations for the whole distribution of L(θ) and L†(θ), equivalent to the
distribution of ReL(θ) and ImL(θ) are presented. In order to be able to calculate general
n-point correlation functions, one has to consider the following generating functional:

"[s, s∗] =
〈

exp

{∫ 2π

0
dθ
[
s∗(θ)L(θ) + s(θ)L†(θ)

]}〉
(21)

where s(θ) and s∗(θ) are the source terms. Any n-point correlation function can be represented
as a functional derivative of "[s, s∗]:

〈L(θ1)L(θ2) · · ·L∗(θm)L∗(θm+1) · · ·〉 = δ

δs∗1

δ

δs∗2
· · · δ

δsm

δ

δsm+1
· · ·"[s, s∗]

∣∣∣∣
s,s∗=0

(22)

where sm and s∗l stand for s(θm) and s∗(θl) respectively. Using the Fourier transform of these
source terms

sk =
∫ 2π

0
dθ e−ikθ s(θ) s∗k = (sk)

∗ (23)

and the expression (8) the generating functional (21) can be rewritten as

"[s, s∗] =
〈

exp

{
−

∞∑
k=1

1

k

(
s∗k ρk + skρ

†
k

)}〉
. (24)

It will be calculated in the limit N = ∞. It is convenient to redefine the numbering of one-
particle orbitals so the upper occupied level in |�0〉 corresponds now to n = 0 and all the states
with n � 0 are occupied. This state is the infinitely deep Fermi sea—the ground state of the
fermionic system, if one-particle energy En is an increasing function of the level index n. In
addition, this state is now annihilated by the action of ρk for k > 0: it is impossible to promote
a fermion from the state n to an empty lower state n − k. It is well known from the theory
of one-dimensional correlated electrons [11] that the operators ρk and ρ†

k acquire non-zero
commutation relations in the presence of infinite filled Fermi sea (Schwinger terms). To show
this let us begin with

[ρk, ρ
†
p] =

+∞∑
n,m=−∞

[c†
n−kcn, c

†
m+pcm] =

+∞∑
n=−∞

(
c

†
n−kcn−p − c

†
n−k+pcn

)
. (25)
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The result is non-zero, since the operators are not well behaved. It is necessary to extract the
singular part by introducing the normal ordered operators in the state |�0〉 by extracting the
expectation value in this state:

: c†
mcn := c†

mcn − 〈c†
mcn〉 = c†

mcn − δm,nn
0
m (26)

where n0
m ≡ 〈c†

mcm〉 is the Fermi–Dirac distribution of occupation numbers in the ground state.
Rewriting c†

mcn =: c†
mcn : +δm,nn0

m and substituting it into (25) the commutation relation of
density operators becomes

[ρk, ρ
†
p] =

+∞∑
n=−∞

(
: c†

n−kcn−p : − : c†
n−k+pcn :

)
+ δk,p

+∞∑
n=−∞

(
n0
n−k − n0

n

) = k δk,p. (27)

In this expression the normal ordered operators were cancelled, since they are not singular.
The last sum is equal to the number of orbitals from 1 to k.

When calculating the matrix elements as in (24) the order of ρk and ρ†
k is important when

these operators do not commute. One requires that the matrix element should coincide with
the statistical average in the coordinate representation (2). Suppose that an operator ρk for
k > 0 happens to be next to the left of the state |�0〉. The result would be zero, since this state
is annihilated by ρk for k > 0, which is not true for the statistical average. In order to obtain
the correct expression all operators ρk for k > 0 must be placed to the left of ρ†

k for k > 0, in
the so-called anti-normal order. The operators in the generating functional (24) must therefore
be rearranged as

"[s, s∗] =
〈

exp

(
−

∞∑
k=1

s∗k ρk
k

)
exp

(
−

∞∑
k=1

skρ
†
k

k

)〉
. (28)

Using the fact that the commutator of ρk and ρ†
k is a c-number and ρk annihilates the ground

state for k > 0, the generating functional is given by the famous Baker–Campbell–Hausdorff
formula:

"[s, s∗] =
〈

exp

(
−

∞∑
k=1

s∗k ρk
k

)
exp

(
−

∞∑
k=1

skρ
†
k

k

)〉

= exp

( ∞∑
k=1

s∗k sk
k2

[ρk, ρ
†
k ]

)

= exp

( ∞∑
k=1

s∗k sk
k

)
(29)

which is obviously Gaussian. In particular, taking the corresponding derivatives of "[s, s∗]
with respect to sk/k and s∗k /k in analogy to (22) the correlation function of powers of ρk or
traces of Uk can be calculated:〈∏

k

ρ
†
k

mk
∏
p

ρ
m′
p

p

〉
=
〈∏

k

(
trU †k

)mk ∏
p

(
trUp

)m′
p

〉
=
∏
k

δmk,m′
k
kmkmk! (30)

in accordance with the results of [12]. This result and the Gaussian characteristic functional (29)
are consequences of the anomalous commutation relations (27) that are fulfilled by the operator
ρk and its Hermitian conjugate and the fact that ρk annihilates the ground state for N = ∞. It
is worth mentioning here that the correlation function (30) and its generating functional (29)
are in fact the restatements in terms of the field theory of the so called functional central limit
theorem for logZ discussed in [7]. There it was proven using the Frobenius formula for the
irreducible characters of the permutation group, which constitutes the mathematical basis of
the bosonization [8].
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Returning to the function s(θ) of the angle, the bilinear form in the exponent of (29) can
be rewritten as a double integral

log"[s, s∗] =
∫ 2π

0

∫ 2π

0
dθ1 dθ2 s

∗(θ1)K2(θ1 − θ2; ∞) s(θ2) (31)

where the ‘propagator’ is given by (19) for infinite N , i.e.

K2(θ; ∞) =
∞∑
k=1

eikθ

k
e−2kη = − log

(
1 − eiθe−2η

)
(32)

and the infinitesimal imaginary part η of the angle θ was included to ensure convergence at
θ = 0. It was not necessary for finite N , since in (19) the first sum is finite and the second
one is absolutely convergent. It is well known [8, 11] that an ultraviolet cut-off 1/η should
be introduced when dealing with an infinite Fermi sea. Using this cut-off, the correlation
function (32) at the same point (θ = 0) is described by

K2(0; ∞) = − log
(
1 − e−2η

) ≈ log
1

2η
(33)

which should be compared with the leading behaviour ofK2(0;N) ∼ logN . In fact, for large
but finite N one can make the scaling ansatz for the correlation function K2(0;N, η):

K2(0;N, η) = log
1

2η
× f

(
logN/log

1

2η

)
(34)

with f (x) → 1 as x → ∞ and f (x) ≈ x for x → 0. The scaling form (34) can be justified
by calculating the leading behaviour of (19) for N → ∞ and θ = 2iη → 0. Using the
scaling (34) the correspondence between N and 1/2η is established for the leading behaviour
(in logN ) of the second moments of ReL(θ) and ImL(θ) at the same point. Whether the
bosonization, which applies for the caseN = ∞ only, can provide results for other correlation
functions for finite N through some scaling relations such as (34) is an open question.

Finally I give explicit expressions for correlation functions Q2, R2 and X2 for θ �= 0
calculated using (17), (18). Separating the real and imaginary parts in (32) they read

Q2(θ; ∞) = R2(θ; ∞) = 1

2
log

(
1∣∣2 sin θ

2

∣∣
)

(35)

X2(θ; ∞) = θ − π

4
mod

π

2
(36)

where the modπ/2 means that the values taken by X2(θ; ∞) lie in the interval [−π/4, π/4]
so it is a periodic function of the angle. The functions (35) and (36) are shown in figure 1. It
would be interesting to compare these correlation functions with the corresponding functions
for real and imaginary parts of the Riemann zeta function high up the critical line. The function
R2(θ; ∞) is related to the variance of the number of eigenvalues in the arc of length θ , which
was studied in [13].

It must be mentioned that the present discussion is not restricted to the logarithms of the
characteristic polynomials L(θ) only. In fact, any function F of N variables θj of the form
F(θ) = ∑

j f (θj ) can be shown to have Gaussian distribution. This amounts to making the
correspondence 2πsk/k = fk , where fk are Fourier coefficients of f (θ), in the generating
functional (24). The mean value of F , given by Nf0/2π , is a deterministic quantity and must
be subtracted from the beginning. Then, under appropriate conditions of integrability, namely
convergence of the sum of k|fk|2, the Gaussian distribution of F follows from (29).

In this paper I have shown how the one to one correspondence between the probability
measure and Slater determinants of fermions in one dimension can be used in order to calculate
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0

1

2

3
Q

2 (
θ,

∞
),

   
R

2(θ
,∞

)

X
2 (

θ,
 ∞

)

 

0

− π/4

π/4

0 − π/2 − π π/2 π 0 − π/2 − π π /2 π

Figure 1. The correlation functions Q2(θ; ∞), R2(θ; ∞) and X2(θ; ∞) for η = 0.001.

different statistical properties of the CUE of random matrices. In particular, the correlation
functions of the density of states, which corresponds to the density of the fermions, are obtained
with the help of the Wick theorem as a diagrammatic expansion. This method was applied to
the calculation of correlation functions of characteristic polynomials. The case ofN = ∞ was
treated by the method of bosonization and the generating functional of correlation functions
was calculated exactly, yielding an alternative derivation of some of the results of [6,7,12,13].
The corresponding distribution was shown to be Gaussian, corresponding to the functional
central limit theorem of [7]. In the future it would be interesting to investigate by the present
method the case of finite N in order to obtain the correlation functions of the characteristic
polynomials at the same point.

In conclusion I would like to remark that the finite-N calculations presented in this paper
and in [6, 7, 12, 13] are related to the results obtained for the (static) correlation functions of
strongly correlated particles in one dimension. Indeed, it is known that the different circular
ensembles of random matrices correspond to the Calogero–Sutherland model [14], which
describes a system of N interacting particles. This model with interactions falling off as the
inverse square of the distance between the particles and proportional to the coupling constant
λ(λ − 1) was shown in [15] to be equivalent to the system of effective free particles with
fractional quantum statistics. The values of the coupling constant λ = 1/2, 1 and 2 correspond
to the orthogonal, the unitary and the symplectic ensemble respectively. In this paper only the
λ = 1 Calogero–Sutherland model equivalent to the free fermions was considered within the
framework of the second quantization. The generalization of the present approach to other
ensembles, corresponding to more exotic fractional statistics, is an interesting issue [16].
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